Chapter 5: FORCE AND MOTIN I

1. The figures below shows four situation in which forces act on a block that lies on a frictionless floor. In which figure the block has the greatest acceleration?
(a)

(b)

(c)

(d)

2. A force of $\mathbf{0 . 2} \mathbf{N}$ acts on a mass of $\mathbf{1 0 0} \mathbf{~ g}$, what is its acceleration?
(a) $2 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}$
(b) $2 \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}$
(c) $2 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$
(d) $2 \mathrm{~m} / \mathrm{s}^{2}$
3. A man pulls a box of mass $\mathbf{3}$ kgvertically upward with a force of magnitude $\mathbf{4 0} \mathbf{N}$. What is the acceleration of the box?
(a) $a=\frac{T-m g}{m}$
(b) $a=\frac{m g-T}{m}$
(c) $a=\frac{T+m g}{m}$
(d) $a=\frac{m}{T+m g}$
4. Which of the following figures correctly show the vector addition of forces $\mathbf{F}_{\mathbf{1}}$ and $\mathbf{F}_{\mathbf{2}}$?
F_{1}
(a)

(b)

(c)

(d)

5. If the $\mathbf{1} \mathbf{~ k g}$ body has an acceleration of $\mathbf{2 ~ m} / \mathbf{s}^{\mathbf{2}}$ at an angle of $\mathbf{2 0 ^ { \circ }}$ above the positive direction of the x -axis. What is the net force in unit vctor notation?
(a) $\vec{F}=0.34 \hat{i}+0.94 \hat{j}$
(b) $\vec{F}=1.88 \hat{i}+0.68 \hat{j}$
(c) $\vec{F}=0.68 \hat{i}+1.88 \hat{j}$
(d) $\vec{F}=0.94 \hat{i}+0.34 \hat{j}$
6. Two forces act on a particle that moves with constantvelocity $\vec{v}=3 \hat{i}-4 \hat{j} \mathbf{m} / \mathbf{s}$, one of the forces is $\vec{F}_{1}=2 \hat{i}-6 \hat{j} \mathbf{N}$, what is the other force?
(a) $\vec{F}_{2}=2 \hat{i}-6 \hat{j}$
(b) $\vec{F}_{2}=6 \hat{i}-10 \hat{j}$
(c) $\vec{F}_{2}=-2 \hat{i}+6 \hat{j}$
(d) $\vec{F}_{2}=-6 \hat{i}+10 \hat{j}$
7. A particle has a weight of $\mathbf{2 2} \mathbf{N}$ at a point where $\mathbf{g}=\mathbf{9 . 8} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$, what are its mass and weight at a point where $\mathbf{g}=\mathbf{0}$?
(a) $m=2.2 \mathrm{~kg}$
(b) $\mathrm{m}=0$
$W=2.2 \mathrm{~N}$
(c) $\begin{aligned} \mathrm{m} & =0.45 \mathrm{~kg} \\ \mathrm{~W} & =0\end{aligned}$
(d) $\mathrm{m}=0$
$W=45 \mathrm{~N}$
8. In which figure of the following the y-component of the net force is zero?
(a)

(b)

(c)

(d)

9. In the figure a cord holds stationary a block of mass $\mathbf{m}=\mathbf{8 . 5} \mathbf{~ k g}$ on a frictionless plane that is inclined at An angle $\boldsymbol{\theta}=\mathbf{3 0}^{\circ}$, the tension in the cord \mathbf{T} equals:
(a) 72.14 N
(b) 83.3 N
(c) 53.14 N
(d) 41.65 N

10. In question9, the Normal forceN acting on the block is:
(a) $N=F_{g}-m g \cos \theta$
(b) $N=F_{g} \cos \theta$
(c) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}+\mathrm{mg} \cos \theta$
(d) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}$
11. In question9, if the cord is cut then the mass will slide with acceleration equals:
(a) $\mathrm{a}=-4.9 \mathrm{~m} / \mathrm{s}^{2}$
(b) $\mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) $\mathrm{a}=-8.5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $\mathrm{a}=-3.4 \mathrm{~m} / \mathrm{s}^{2}$
12. A block of mass $\mathbf{M}=\mathbf{2 0} \mathbf{~ k g}$ hangs from three cords by means of a knot, (the mass \mathbf{M} does not move), what is the value of tensionT3 ${ }_{3}$?
(a) 230 N
(b) 196 N
(c) 426 N
(d) 226 N

M
13. What is the net force acting on a body of a mass of $48 \mathbf{k g}$, when its acceleration is $6 \mathrm{~m} / \mathrm{s}^{2}$?
(a) 758 N
(b) 182 N
(c) 288 N
(d) 470 N
14. Which figure of the following shows the right direction of the tension \mathbf{T} ? (the two masses are stationary).
(a)

(b)

(c)

(d)

أعداد: أ.خذيجة سعيد إشراف: د. هناء فرحان
15. Two forces act on a block of mass $\mathbf{m}=\mathbf{0 . 5} \mathbf{~ k g}$ that Moves along the x -axis on a frictionless table, $\mathbf{F}_{\mathbf{1}}=\mathbf{3} \mathbf{N}$ and $\mathbf{F}_{\mathbf{2}}=\mathbf{1} \mathbf{N}$ directed at angle $\boldsymbol{\theta}=\mathbf{3 0 ^ { \circ }}$ as shown, What is the acceleration of the block?

(a) $-4.3 \mathrm{~m} / \mathrm{s}^{2}$
(b) $-7.7 \mathrm{~m} / \mathrm{s}^{2}$
(c) $-5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $-7 \mathrm{~m} / \mathrm{s}^{2}$
16. If $m_{1}=\mathbf{2 k g}$ and $m_{2}=4 \mathbf{k g}$ and the same force is applied to both masses, then the ratio of their accelerations is:
(a) $\frac{a_{2}}{a_{1}}=\frac{1}{2}$
(b) $\frac{a_{2}}{a_{1}}=2$
(c) $\frac{a_{2}}{a_{1}}=\frac{1}{4}$
(d) $\frac{a_{2}}{a_{1}}=4$
17. A force \mathbf{F} applied to a body of mass $\mathbf{m}_{\mathbf{0}}$ giving it an acceleration $\mathbf{a}_{\mathbf{0}}$, what is the mass of a body \mathbf{x} if the same force is applied to it and accelerate it by $\mathbf{a}_{\mathbf{x}}$?
(a) $m_{x}=m_{0} \frac{a_{x}}{a_{0}}$
(b) $m_{x}=m_{0} \frac{a_{0}}{a_{x}}$
(c) $m_{x}=\frac{a_{x}}{a_{0}}$
(d) $m_{x}=\frac{a_{0}}{a_{x}}$
18. In the figure, two forces acting on a box of mass \mathbf{m} moving over a frictionless ice along the \mathbf{x}-axis .
What is the acceleration of the box?

(a) $a_{x}=\frac{F_{1}+F_{2} \cos \theta}{m}$
(b) $a_{x}=\frac{F_{2} \cos \theta-F_{1}}{m}$
(c) $a_{x}=\frac{F_{2} \cos \theta}{m}$
(d) $a_{x}=\frac{F_{1}-F_{2}}{m}$
19. The magnitude of the centripetal force is
(a) $F=m \frac{v^{2}}{R^{2}}$
(b) $F=\frac{v^{2}}{R}$
(c) $F=m \frac{v}{R}$
(d) $F=m \frac{v^{2}}{R}$

1. What is the gravitational force on a man of mass \mathbf{m} when he is sitting in a car that accelerates at a ?
(a) $\mathrm{F}_{\mathrm{g}}=\mathrm{ma}$
(b) $\mathrm{F}_{\mathrm{g}}=\mathrm{m}(\mathrm{g}-\mathrm{a})$
(c) $F_{g}=\mathrm{mg}$
(d) $\mathrm{F}_{\mathrm{g}}=\mathrm{m}(\mathrm{a}-\mathrm{g})$
2. Two forces act on a particle that moves with constantvelocity $\vec{v}=3 \hat{i}-4 \hat{j} \mathbf{m} / \mathbf{s}$, one of the forces is $\vec{F}_{1}=2 \hat{i}-6 \hat{j} \mathbf{N}$,what is the other force?
(a) $\vec{F}_{2}=2 \hat{i}-6 \hat{j}$
(b) $\vec{F}_{2}=6 \hat{i}-10 \hat{j}$
(c) $\vec{F}_{2}=-2 \hat{i}+6 \hat{j}$
(d) $\vec{F}_{2}=-6 \hat{i}+10 \hat{j}$
3. The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, what total mass is accelerated to the right byCord $\mathbf{2}$?

أعداد: أ.خديجة سعيد إشراف: د. هناء فرحان
(a) 10 kg
(b) 18 kg
(c) 13 kg
(d) 7 kg
4. A particle has a weight of $\mathbf{2 2} \mathbf{N}$ at a point where $\mathbf{g} \mathbf{= 9 . 8} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$, what are its mass and weight at a point where $\mathbf{g}=\mathbf{0}$?
(a) $\mathrm{m}=2.2 \mathrm{~kg}$
(b) $\mathrm{m}=0$
(c) $\mathrm{m}=0.45 \mathrm{~kg}$
(d) $\mathrm{m}=0$
$W=0$
$\mathrm{W}=2.2 \mathrm{~N}$
$\mathrm{W}=0$
$\mathrm{W}=45 \mathrm{~N}$
5. In which figure of the following the y-component of the net force is zero?
(a)

(b)

(c)

6. The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, what total mass is accelerated to the right by force \vec{F} ?

(a) 10 kg
(b) 18 kg
(c) 13 kg
(d) $245 \mathrm{~m} / \mathrm{s}$
7. Three forces act on a particle that moves with unchanging velocity $\bar{v}=2 \hat{i}-7 \hat{j}$, two of the forces are $\vec{F}_{1}=2 \hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{F}_{2}=-5 \hat{i}+8 \hat{j}-2 \hat{k}$. what is the third force ?
(a) $3 \hat{i}-11 \hat{j}+4 \hat{k}$
(b) $7 \hat{i}-5 \hat{j}$
(c) $-3 \hat{i}+11 \hat{j}-4 \hat{k}$
(d) $-7 \hat{i}+5 \hat{j}$
8. An $\mathbf{1 1} \mathbf{~ k g}$ object is supported by a cord that Runs around a pulley and to a scale. The opposite end of the scale is attached by a cord to a wall.

What is the reading on the scale?

(a) 11 N
(b) 9.8 N
(c) 107.8 N
(d) 215.6 N

(b)
27. A block of mass $\mathbf{m}_{\mathbf{1}}=\mathbf{3 . 7} \mathbf{~ k g}$ on frictionless inclined plane of angle 30° is connected by a cord over a massless frictionless pulley to a second block of mass $\mathbf{m}_{\mathbf{2}}=\mathbf{2 . 3} \mathbf{~ k g}$ hanging vertically as shown.

If the magnitude of the acceleration of each block is $0.735 \mathrm{~m} / \mathbf{s}^{\mathbf{2}}$, what is the tension in the cord ?

(a) 36.3 N
(b) 22.5 N
(c) 20.8 N
(d) 18.1 N
28. In question $\mathbf{2 7}$, what is the normal force acting on the block $\mathbf{m}_{\mathbf{1}}$?
(a) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}-\mathrm{m}_{1} \mathrm{~g}$
(b) $\mathrm{N}=\mathrm{F}_{g} \cos \theta$
(c) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}+\mathrm{m}_{1} \mathrm{~g}$
(d) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}$ $\cos \theta$ $\cos \theta$
29. In question 27, if the cord is cut what is the acceleration of mass $\mathbf{m}_{\mathbf{2}}$?
(a) $a=-4.9 \mathrm{~m} / \mathrm{s}^{2}$
(b) $a=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) $a=-0.735$
(d) a = zero $\mathrm{m} / \mathrm{s}^{2}$
30. If the $\mathbf{1} \mathbf{~ k g}$ body has an acceleration of $\mathbf{2} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$ at an angle of $\mathbf{2 0 ^ { \circ }}$ above the positive direction of the x-axis. What is the net force in unit vctor notation?
(a) $\vec{F}=0.34 \hat{i}+0.94 \hat{j}$
(b) $\vec{F}=1.88 \hat{i}+0.68 \hat{j}$
(c) $\vec{F}=0.68 \hat{i}+1.88 \hat{j}$
(d) $\vec{F}=0.94 \hat{i}+0.34 \hat{j}$

